

- Introduction
- Background
- Research questions
- Approach
- Datasets
- Results and discussion
- Conclusion
- Future research

The Software Development Domain

High-quality software:

- nowadays almost every aspect of life relies on it (health, transportation, entertainment)
- Costly
- Hard-work for developers

=> Application of **Machine Learning** techniques

"Deep learning has achieved competitive performance against previous algorithms on about 40 SE tasks" [cit]

Problem

When applying Deep learning to software development domain tasks, we face three main problems:

- Data scarcity
- Energy consumption
- Manipulation of source code

```
Source code Python:
    from pygithub3 import Github
    username = raw_input("Please enter a Github username: ")
    password = raw_input("Please enter the account password: ")
    gh = Github(login=username, password = password)
    get_user = gh.users.get()
    user_repos = gh.repos.list().all()
    for repo in user_repos:
        print repo.language

Description:
    Getting repository information using pygithub3 for Python
```

Source code summarization for Python

- Introduction
- Background
- Research questions
- Approach
- Datasets
- Results and discussion
- Conclusion
- Future research

Natural Language Processing on Source Code

- Context awareness
- Unlimited vocabulary
- Data preprocessing and tokenization


```
public class HelloWorld {
    public static void main(String[] args) {
        // Prints "Hello, World" to the terminal window.
        System.out.println("Hello, World");
    }
}
```

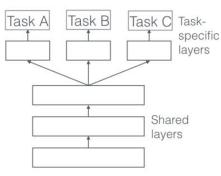

public class HelloWorld { public static void main (String [] args) { System . out . println (" Hello, World ") ; } }

Multi-task Deep Learning

(Multi-task Deep Learning) given m learning tasks $\{T_i\}_{i=1}^m$ where all the tasks or a subset of them are related, multi-task learning aims to help improve the learning of a model for T_i by using the knowledge contained in all or some of the m tasks.

Why?

- Implicit data augmentation
- Attention focusing
- Representation bias
- Regularization



Hard parameter sharing for multi-task learning in deep neural networks [1]

- Introduction
- Background
- Research questions
- Approach
- Datasets
- Results and discussion
- Conclusion
- Future research

Research questions

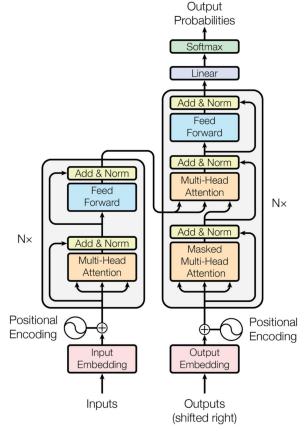
- Can multi-task deep learning be beneficial for tasks in the software development domain?
- How far is multi-task deep learning from state-of-the-art solutions in the software development domain?
- Could the model be trained with the English language and programming languages together?
- How does training on multiple tasks of the software development domain simultaneously compare to training on each task separately act?

- Introduction
- Background
- Research questions
- Approach
- Datasets
- Results and discussion
- Conclusion
- Future research

Transformer model

State-of-the-art for sequence-to-sequence problem manipulation:

- Parallelizable computation
- Faster training
- Manipulation of long-range dependencies
- Encoder Decoder

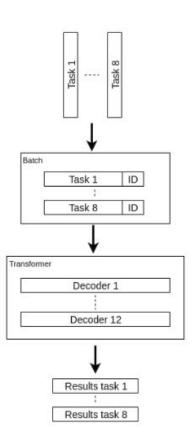


Transformer model by Vaswani et al. (2017)

Model architecture

Multi-task

- Decoder-only with attention
- Vocabulary from the language model
- Multiple loss functions optimized concurrently
- Single-task
 - Each task is trained independently
 - No language model objective
 - Encoder-decoder with attention



Experimental setup

Hardware:

Machine name	P100	DGX-1
GPUs	1x NVIDIA P100	8x Tesla V100
GPU Core	3.5 K	41 K
Memory	16 GB	8 x 16 GB

Leibniz-Rechenzentrum (LRZ) available machines

Tensor2Tensor 🎓

- TensorFlow based library maintained by the Google Brain team
- Three phases:
 - Data generation
 - □ Training
 - Decoding and evaluation

- Introduction
- Background
- Research questions
- Approach
- Datasets
- Results and discussion
- Conclusion
- Future research

Dataset

#	Tasks in requirement (1 paper)	#	Tasks in Testing (27 papers)	#	Tasks in management (12 papers
A1	Requirement extraction from natural languages (1)	D1	Defect prediction (9)	F1	Development cost or effort estimation (6)
	ranguages (1)	D2	Reliability or changeability estimation (8)	F2	
		D3	Deep learning testing (3)	F3	Software size estimation (1)
#	Tasks in design (1 papers)	D4	Energy consumption estimation (1)	F4	Traceable link generation (1)
B1	Design pattern recognition (1)	D5	Grammar-based fuzzing testing (1)		
		D6	Retesting necessity estimation (1)		
#	Tasks in development (30 papers)	D7	Reliability model selection (1)	1	ndustrial practitioners participate
	Program learning and program	D8	Robot testing (1)		in 13 SE tasks (21 papers)
C1	synthesis (14)	D9	Test input generation for mobile (1)	∥ •	C1: DeepMind, Facebook, Google,
C2	Automatic software repair (2)	D10	Testing effort estimation (1)		Microsoft (8 papers)
C3	Code suggestion (2)			∥ •	C5: Fiat Chrysler Automobiles (1)
C4	Knowledge unit linking in Stack	#	Tasks in maintenance (27 papers)		C7: Microsoft (1)
C5	Overflow (2) Autonomous driving software (1)		Malware detection (10)	۱.,	C11: Clinc Inc. (1)
	API description selection (1)	E2	Bug localization (4)	۱.,	C13: Facebook (1)
C7	API sequence recommendation (1)	E3	Clone detection (3)		D2: URU Video, Inc. (1)
C8	Cross-lingual question retrieval (1)		System anomaly prediction (2)		D5: Microsoft (1)
	Code comment generation (1)		Workload prediction in the cloud (2)		D9: IBM (1)
C9			Bug report summarization (1)		E1: Baidu, Microsoft (2)
	Commit message generation (1)	E7	Bug triager (1)		E4: Tencent Corporation (1)
	Hot path prediction (1)		Duplicate bug report detection (1)		
	Just-in-time defection prediction (1)		Feature location (1)		E8: Accenture Tech. (1)
C13	Model visualization (1)	E10	Real-time task scheduling (1)		E9: ABB Corporate (1)
C14	Source code summarization (1)	E11	Test report classification (1)	•	F1: Motorola Canada Ltd. (1)

Dataset and preprocessing

- 1. 7 supervised tasks from "Deep learning in software engineering" [Li et al.]
- Unsupervised Language Model with 5 languages

- Substitution of char, string and numbers with specific tokens
- Linearization of the code snippets
- Specific Tokenizer for each language

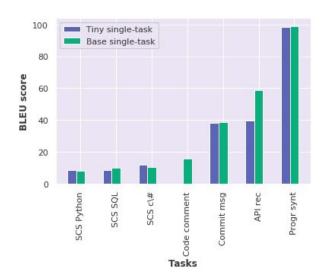
Task	# samples
Source Code Summarization Python	15.000
Source Code Summarization C#	60.000
Source Code Summarization SQL	29.000
Code comment generation Java	527.400
Commit messages generation	30.000
API sequence recommendation	7.500.000
Program learning and synthesis	90.000

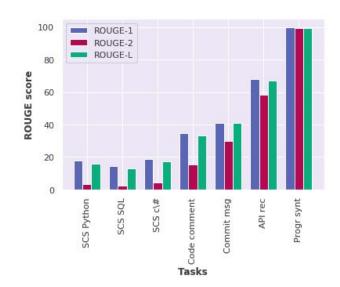
Dataset	# samples
English: 1 Billion world corpus	300.000.000
150K Python Dataset	150.000
SQL corpus	133.000
Java from PGA	700.000
C# from PGA	500.000

- Introduction
- Background
- Research questions
- Approach
- Datasets
- Results and discussion
- Conclusion
- Future research

Single-task learning

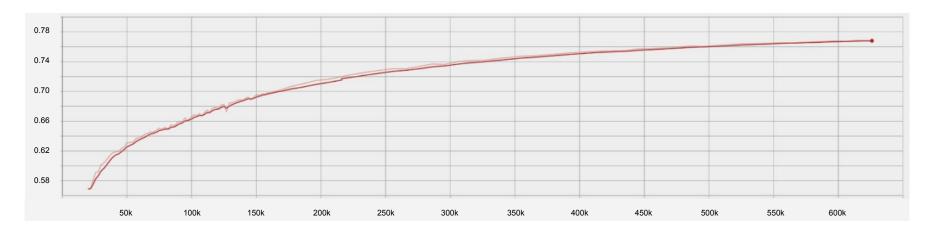
Model	Base	Tiny
Vocabulary size	8192	8192
Hidden size	512	128
Batch size	4096	256
Maximum sequence length	1024	1024
Number of parameters	~ 50M	~ 25M
GPUs used	1	1





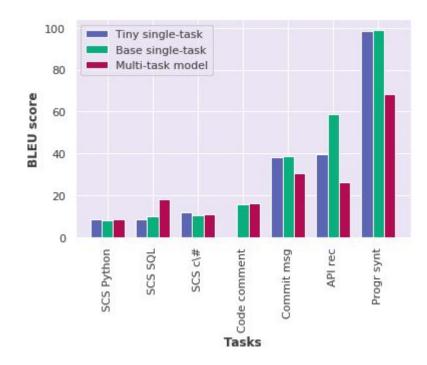
Multi-task learning

Vocabulary size	64K
Hidden size	12
Batch size	1024
Maximum sequence length	1024
Number of parameters	360M
GPUs used	8



Single-task vs Multi-task

- MTL performed better on summarization tasks
- Overfitting avoided for MTL

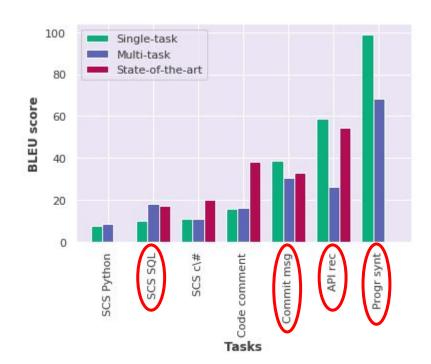


Comparison with state-of-the-art

- First and last do not have BLEU counterpart
- Improvement over 4 tasks

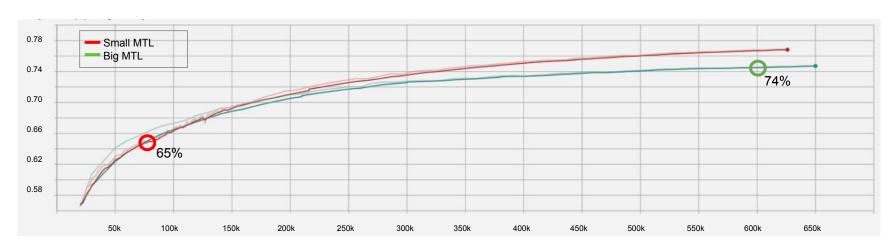
Program Synthesis

Single-task	99.87%
Multi-task	94.8%
State-of-the-art	85.8%



Partial results

Vocabulary size	64K
Hidden size	12
Batch size	128
Maximum sequence length	1024
Number of parameters	422M
GPUs used	8



- Introduction
- Background
- Research questions
- Approach
- Datasets
- Results and discussion
- Conclusion
- Future research

Conclusions

- We investigate the application of Multi-task learning in the software development domain
- We trained single-task and multi-tasks models based on the Transformer architecture
- Consider the structural information of the source code to deal with English and programming languages
- We achieved better performances than the state-of-the-art papers on 4 tasks
- Multi-task learning is promising for this domain, given enough resources available

- Introduction
- Background
- Research questions
- Approach
- Datasets
- Results and discussion
- Conclusion
- Future research

Future research

- Deeper hyperparameters exploration
- Combination of different tasks to understand which give benefits
- Better evaluate the effectiveness of the language model
- Starting point for future research in the software development domain

Technische Universität München Faculty of Informatics Chair of Software Engineering for Business Information Systems

Boltzmannstraße 3 85748 Garching bei München

Tel +49.89.289. 17132 Fax +49.89.289.17136

matthes@in.tum.de

wwwmatthes.in.tum.de

